未來的開關(guān)電源將是什么樣子
一、強大的市場需求,始終是開關(guān)電源|穩(wěn)壓器發(fā)展的重要動力 開關(guān)電源技術(shù)屬于電力電子技術(shù),它運用功率變換器進行電能變換,經(jīng)過變換電能,可以滿足各種用電要求。
由于其高效節(jié)能可帶來巨大經(jīng)濟效益,因而引起社會各方面的重視而得到迅速推廣。
以AC-DC的變換為例,與傳統(tǒng)采用工頻變換技術(shù)的相控電源相比,采用大功率開關(guān)管的高頻整流電源,在技術(shù)上是一次飛躍,它不但可以方便地得到不同的電壓等級,更重要的是甩掉了體大笨重的工頻變壓器及濾波電感電容。由于采用高頻功率變換,使電源裝置顯著減小了體積和重量,而有可能和設備的主機體積相協(xié)調(diào),并且使電性能得到進一步提高。
正因為如此,1994年我國原郵電部作出重大決策,要求通信領(lǐng)域推廣使用開關(guān)電源以取代相控電源。幾年來的實踐已經(jīng)證明,這一決策是完全正確的。開關(guān)電源的使用為國家節(jié)省了大量銅材、鋼材和占地面積。由于變換效率提高,能耗減少,降低了電源周圍環(huán)境的室溫,改善了工作人員的環(huán)境。我國郵電通信部門廣泛采用開關(guān)電源極大地推動了它在其它領(lǐng)域的廣泛應用。
值得指出的是,近兩年來出現(xiàn)的電力系統(tǒng)直流操作電源,是針對國家投資4000億元用于城網(wǎng)、農(nóng)網(wǎng)的供電工程改造、提高輸配電供電質(zhì)量而推出的,它已開始采用開關(guān)電源以取代傳統(tǒng)的相控電源。國內(nèi)一些通信公司如中興通訊等均已相繼推出系列產(chǎn)品。
目前,國內(nèi)開關(guān)電源自主研發(fā)及生產(chǎn)廠家有300多家,形成規(guī)模的有十多家。國產(chǎn)開關(guān)電源已占據(jù)了相當市場,一些大公司如中興通訊自主開發(fā)的電源系列產(chǎn)品已獲得廣泛認同,在電源市場競爭中頗具優(yōu)勢,并有少量開始出口。
二、21世紀開關(guān)電源的發(fā)展展望 能源在社會現(xiàn)代化方面起著關(guān)鍵作用。電力電子技術(shù)以其靈活的功率變換方式,高性能、高功率密度、高效率,在21世紀必將得到大力發(fā)展,而開關(guān)電源是電力電子技術(shù)中占有很大比重的一個重要方面。
1.半導體和電路器件是開關(guān)電源發(fā)展的重要支撐 功率半導體器件仍然是電力電子技術(shù)發(fā)展的“龍頭”,電力電子技術(shù)的進步必須依靠不斷推出的新型電力電子器件。 功率場效應管(MOSFET)由于單極性多子導電,顯著地減小了開關(guān)時間,因而很容易地便可達到1MHz的開關(guān)工作頻率而受到世人矚目。但是MOSFET,提高器件阻斷電壓必須加寬器件的漂移區(qū),結(jié)果使器件內(nèi)阻迅速增大,器件的通態(tài)壓降增高,通態(tài)損耗增大,所以只能應用于中小功率產(chǎn)品。為了降低通態(tài)電阻,美國IR公司采用提高單位面積內(nèi)的原胞個數(shù)的方法。如IR公司開發(fā)的一種HEXFET場效應管,其溝槽(Tre
nch)原胞密度已達每平方英寸1.12億個的世界最高水平,通態(tài)電阻R可達3mΩ。功率MOSFET,500V、TO220封裝的HEXFET自1996年以來,其通態(tài)電阻以每年50%的速度下降。IR公司還開發(fā)了一種低柵極電荷(Qg)的HEXFET,使開關(guān)速度更快,同時兼顧通態(tài)電阻和柵極電荷兩者同時降低,則R×Qg的下降率為每年30%。對于肖特基二極管的開發(fā),最近利用Trench結(jié)構(gòu),有望出現(xiàn)壓降更小的肖特基二極管,稱作TMBS-溝槽MOS勢壘肖特基,而有可能在極低電源電壓應用中與同步整流的MOSFET競爭。
作為半導體器件的硅材料“統(tǒng)治”半導體器件已50年有余,硅性能潛力的進一步挖掘是有難度的。有關(guān)半導體器件材料的研究從70年代開始,特別是80~90年代以來,砷化鎵(GaAs)、半導體金剛石、碳化硅(SiC)的研究始終在進行著。進入90年代以后,對碳化硅的研究達到了熱點。實驗表明,應用SiC的半導體器件其導通電阻只有Si器件的1/200;如電壓較高的硅功率MOSFET,導通壓降達3~4V,而SiC功率MOSFET,導通壓降小于1V,而關(guān)斷時間小于10ns。實驗表明,電壓達300V的SiC肖特基二極管(另一電極用金、鈀、鈦、鈷均可),反向漏電流小于0.1mA/mm,而反向恢復時間幾乎為零。
一段時間曾認為砷化鎵很有希望取代硅半導體材料,F(xiàn)在實驗表明,碳化硅材料性能更優(yōu)越。SiC的研究所以滯后于GaAs,主要原因是SiC晶體的制造難度太大,當溫度大于2000℃時,SiC尚未熔化,但到了2400℃時SiC已升華變成氣體了。現(xiàn)在是利用升華法直接從氣體狀態(tài)生長晶體,目前的問題是要進一步改善SiC表面與金屬的接觸特性和進一步完善SiC的制造工藝,這些問題預計在5~10年內(nèi)得到解決。當應用SiC制造的半導體器件得到廣泛應用時,對電力電子技術(shù)的影響將會是革命性的。變壓器是電力電子產(chǎn)品或開關(guān)電源中重要的必不可少的部件,平面變壓器是近兩年才面世的一種全新產(chǎn)品。與常規(guī)變壓器不同,平面變壓器沒有銅導線,代之以單層或多層印刷電路板,因而厚度遠低于常規(guī)變壓器,能夠直接制作在印刷電路板上。其突出優(yōu)點是能量密度高,因而體積大大縮小,相當于常規(guī)變壓器的20%;效率高,通常為97%~99%;工作頻率高,從50kHz到2MHz;低漏感(小于0.2%);低電磁干擾(EMI)等。 變壓器是應用電能→機械能→電能的一種新型變壓器,它是利用壓電陶瓷電致伸縮的正向和反向特性而制成的。兩片壓電陶瓷緊密牢固地結(jié)合在一起,將原邊交變電壓加于一片壓電陶瓷的水平軸線,這片壓電陶瓷將產(chǎn)生垂直方向的機械振動而使另一片牢固結(jié)合的壓電陶瓷跟著一起作垂直振動,此時將在其水平軸線方向產(chǎn)生電壓次級輸出電壓。目前這種變壓器功率還不大,適用于電壓較高而電流較小的應用場合,如照明燈具的起輝裝置。超容電容器是電容器件近年來的最新進展,美國的麥克韋爾公司一直保持著超容電容技術(shù)的世界領(lǐng)先地位。超容電容器采用了獨特的金屬/碳電極技術(shù)和先進的非水電解質(zhì),具有極大的電極表面和極小的相對距離,F(xiàn)在已開發(fā)生產(chǎn)出多種具有廣泛適用范圍的超容電容器單元和組件,單元容量小到10F,大到2700F。超容電容器可方便地串聯(lián)組合成高壓組件或并聯(lián)組合成高能量存儲組件。超容電容器組件現(xiàn)已可提供650V的高壓高能量應用。 超容電容器具有廣泛的應用前景。使用超容電容器可以使半導體、造紙、紡織等各種工業(yè)高度自動化的制造系統(tǒng)免受電力波動或短暫中斷所造成的巨大損失;超容電容器能為醫(yī)院或公用事業(yè)單位等在必須使用應急發(fā)電機電源時,提供過渡電源,構(gòu)成短期不間斷電源。對于新型電能車或混合電能車,超容電容器可作為電池的補充甚至替代物。 2.電路集成和系統(tǒng)集成及封裝工藝 電力電子產(chǎn)品或電路的發(fā)展方向是模塊化、集成化。具有各種控制功能的專用芯片,近幾年發(fā)展很迅速,如功率因數(shù)校正(PFC)電路用的控制芯片;軟開關(guān)控制用的ZVS、ZCS芯片;移相全橋用的控制芯片;ZVT、ZCTPWM專用控制芯片;并聯(lián)均流控制芯片;電流反饋控制芯片等。
功率半導體器件則有功率集成電路(PowerIC)和IPM。IPM以IGBT作功率開關(guān),將控制、驅(qū)動、保護、檢測電路一起封裝在一個模塊內(nèi)。由于外部接線、焊點減少,可靠性顯著提高。集成化、模塊化使電源產(chǎn)品體積小、可靠性高,給應用帶來極大方便。
電路集成的進一步發(fā)展方向是系統(tǒng)集成。如現(xiàn)在的逆變器是將200~300個零件裝配在一起成為一個系統(tǒng)。這樣做法要花很多時間和人工,成本也高,也難于做得體積很小。美國VICOR公司生產(chǎn)的第一代電源模塊受生產(chǎn)技術(shù)、功率、磁元件體積和封裝技術(shù)的限制,密度始終未能超過每立方英寸80W。近年來,推出的第二代電源模塊,內(nèi)部結(jié)構(gòu)也改為模塊式,達到高度集成化和全面電腦化。功率密度已經(jīng)達到了每立方英寸120W。電源模塊內(nèi)含元件只有第一代產(chǎn)品的1/3,由115個減為35個。第二代電源模塊的控制電路只含兩個元件,被稱作“大腦”(Brain)!按竽X”是兩片厚膜電路,由VICOR公司自己的無塵室自行開發(fā)生產(chǎn),其總體積只有0.1in3,取代了第一代產(chǎn)品中的約100個控制元件,體積縮小了60%。第二代產(chǎn)品的另一個突破是變壓器的改良,采用屏蔽式結(jié)構(gòu)和鍍銅磁芯,把初級和次級線圈分置左右兩邊而溫升很低。寄生電容和共模噪聲也很低。變壓器處理功率的密度達到了每立方英寸1000W,溫升只有3℃。第二代產(chǎn)品功率器件的管芯直接焊接在基板上以取代第一代TO-200封裝,可以提高散熱效率,降低寄生電感、電容和熱阻。第二代產(chǎn)品的集成度顯然提高了,但還不是系統(tǒng)集成。李澤元教授領(lǐng)導的美國電力電子系統(tǒng)中心(CenterofPowerElectronicsSystems,簡稱CPES)已經(jīng)提出了系統(tǒng)集成的設想,信息傳輸、控制與功率半導體器件全部集成在一起,組成的元件之間不用導線聯(lián)接以增加可靠性,采用三維空間熱耗散的方法來改善散熱,有可能將功率從低功率(幾百瓦~千瓦)做到高功率(幾十千瓦以上)。系統(tǒng)集成的結(jié)果,可以改變現(xiàn)在的半自動化、半人工的組裝工藝而可能達到完全自動化生產(chǎn),因而可以降低成本,有利于普遍地推廣應用。李澤元教授正在應用這一設想,以CPES結(jié)合美國幾所大學的特長,在做電機驅(qū)動的系統(tǒng)集成工作。系統(tǒng)集成的第一步是把逆變器做成一個模塊,驅(qū)動電路、保護電路全部放進去;第二步是把逆變器和電機做在一起,形成一個系統(tǒng)集成。還有一個例,英特的微處理器是非常領(lǐng)先的,這些年的發(fā)展趨勢是速度更快,電壓更低,而需要的電流容量一直在增加。目前英特微處理器工作電壓是2~3V/10A,操作頻率是300MHz。預計兩年后甚至不需要兩年,它的工作電壓會降到1V、電流30~50A,操作頻率為1GHz,F(xiàn)在的做法是把開關(guān)電源緊靠在微處理器,開關(guān)電源以很快的速度提供電流給微處理器,這樣尚能滿足現(xiàn)有微處理器的要求。但將來微處理器工作電壓降低,電流增加,速度加快的時候,現(xiàn)有的解決方法將無法達到它的要求。三年前,李澤元教授就提出要徹底解決問題,必須將開關(guān)電源與微處理器結(jié)合在一起。今天英特公司大部分人接受了這一想法而在積極促成此事。提出的構(gòu)想是:開關(guān)電源緊密結(jié)合在微處理器主機板下面。這樣開關(guān)電源的大小必須與微處理器相當,而現(xiàn)在的開關(guān)電源要比微處理器大幾十倍。如何減小體積?這又面臨新的挑戰(zhàn)! 可以預計,下面幾個問題是開關(guān)電源發(fā)展的永恒方向: (1)開關(guān)電源頻率要高,這樣動態(tài)響應才能快,配合高速微處理器工作是必須的;也是減小體積的重要途徑。
(2)體積要減小,變壓器電感、電容都要減小體積。
(3)效率要高,產(chǎn)生的熱能會減少,散熱會容易,容易達到高功率密度。 電力電子技術(shù)是重要的支撐科技,據(jù)美國總統(tǒng)科學和技術(shù)顧問委員會提出,國家關(guān)鍵性的科技領(lǐng)域有七個方面:能源、環(huán)保、資訊與通信、生命科學、材料和交通。每一領(lǐng)域無一不和電力電子有關(guān),都在起著重要作用,而開關(guān)電源是其中的一個重要方面,有著深遠的美好前景。
由于其高效節(jié)能可帶來巨大經(jīng)濟效益,因而引起社會各方面的重視而得到迅速推廣。
以AC-DC的變換為例,與傳統(tǒng)采用工頻變換技術(shù)的相控電源相比,采用大功率開關(guān)管的高頻整流電源,在技術(shù)上是一次飛躍,它不但可以方便地得到不同的電壓等級,更重要的是甩掉了體大笨重的工頻變壓器及濾波電感電容。由于采用高頻功率變換,使電源裝置顯著減小了體積和重量,而有可能和設備的主機體積相協(xié)調(diào),并且使電性能得到進一步提高。
正因為如此,1994年我國原郵電部作出重大決策,要求通信領(lǐng)域推廣使用開關(guān)電源以取代相控電源。幾年來的實踐已經(jīng)證明,這一決策是完全正確的。開關(guān)電源的使用為國家節(jié)省了大量銅材、鋼材和占地面積。由于變換效率提高,能耗減少,降低了電源周圍環(huán)境的室溫,改善了工作人員的環(huán)境。我國郵電通信部門廣泛采用開關(guān)電源極大地推動了它在其它領(lǐng)域的廣泛應用。
值得指出的是,近兩年來出現(xiàn)的電力系統(tǒng)直流操作電源,是針對國家投資4000億元用于城網(wǎng)、農(nóng)網(wǎng)的供電工程改造、提高輸配電供電質(zhì)量而推出的,它已開始采用開關(guān)電源以取代傳統(tǒng)的相控電源。國內(nèi)一些通信公司如中興通訊等均已相繼推出系列產(chǎn)品。
目前,國內(nèi)開關(guān)電源自主研發(fā)及生產(chǎn)廠家有300多家,形成規(guī)模的有十多家。國產(chǎn)開關(guān)電源已占據(jù)了相當市場,一些大公司如中興通訊自主開發(fā)的電源系列產(chǎn)品已獲得廣泛認同,在電源市場競爭中頗具優(yōu)勢,并有少量開始出口。
二、21世紀開關(guān)電源的發(fā)展展望 能源在社會現(xiàn)代化方面起著關(guān)鍵作用。電力電子技術(shù)以其靈活的功率變換方式,高性能、高功率密度、高效率,在21世紀必將得到大力發(fā)展,而開關(guān)電源是電力電子技術(shù)中占有很大比重的一個重要方面。
1.半導體和電路器件是開關(guān)電源發(fā)展的重要支撐 功率半導體器件仍然是電力電子技術(shù)發(fā)展的“龍頭”,電力電子技術(shù)的進步必須依靠不斷推出的新型電力電子器件。 功率場效應管(MOSFET)由于單極性多子導電,顯著地減小了開關(guān)時間,因而很容易地便可達到1MHz的開關(guān)工作頻率而受到世人矚目。但是MOSFET,提高器件阻斷電壓必須加寬器件的漂移區(qū),結(jié)果使器件內(nèi)阻迅速增大,器件的通態(tài)壓降增高,通態(tài)損耗增大,所以只能應用于中小功率產(chǎn)品。為了降低通態(tài)電阻,美國IR公司采用提高單位面積內(nèi)的原胞個數(shù)的方法。如IR公司開發(fā)的一種HEXFET場效應管,其溝槽(Tre
nch)原胞密度已達每平方英寸1.12億個的世界最高水平,通態(tài)電阻R可達3mΩ。功率MOSFET,500V、TO220封裝的HEXFET自1996年以來,其通態(tài)電阻以每年50%的速度下降。IR公司還開發(fā)了一種低柵極電荷(Qg)的HEXFET,使開關(guān)速度更快,同時兼顧通態(tài)電阻和柵極電荷兩者同時降低,則R×Qg的下降率為每年30%。對于肖特基二極管的開發(fā),最近利用Trench結(jié)構(gòu),有望出現(xiàn)壓降更小的肖特基二極管,稱作TMBS-溝槽MOS勢壘肖特基,而有可能在極低電源電壓應用中與同步整流的MOSFET競爭。
作為半導體器件的硅材料“統(tǒng)治”半導體器件已50年有余,硅性能潛力的進一步挖掘是有難度的。有關(guān)半導體器件材料的研究從70年代開始,特別是80~90年代以來,砷化鎵(GaAs)、半導體金剛石、碳化硅(SiC)的研究始終在進行著。進入90年代以后,對碳化硅的研究達到了熱點。實驗表明,應用SiC的半導體器件其導通電阻只有Si器件的1/200;如電壓較高的硅功率MOSFET,導通壓降達3~4V,而SiC功率MOSFET,導通壓降小于1V,而關(guān)斷時間小于10ns。實驗表明,電壓達300V的SiC肖特基二極管(另一電極用金、鈀、鈦、鈷均可),反向漏電流小于0.1mA/mm,而反向恢復時間幾乎為零。
一段時間曾認為砷化鎵很有希望取代硅半導體材料,F(xiàn)在實驗表明,碳化硅材料性能更優(yōu)越。SiC的研究所以滯后于GaAs,主要原因是SiC晶體的制造難度太大,當溫度大于2000℃時,SiC尚未熔化,但到了2400℃時SiC已升華變成氣體了。現(xiàn)在是利用升華法直接從氣體狀態(tài)生長晶體,目前的問題是要進一步改善SiC表面與金屬的接觸特性和進一步完善SiC的制造工藝,這些問題預計在5~10年內(nèi)得到解決。當應用SiC制造的半導體器件得到廣泛應用時,對電力電子技術(shù)的影響將會是革命性的。變壓器是電力電子產(chǎn)品或開關(guān)電源中重要的必不可少的部件,平面變壓器是近兩年才面世的一種全新產(chǎn)品。與常規(guī)變壓器不同,平面變壓器沒有銅導線,代之以單層或多層印刷電路板,因而厚度遠低于常規(guī)變壓器,能夠直接制作在印刷電路板上。其突出優(yōu)點是能量密度高,因而體積大大縮小,相當于常規(guī)變壓器的20%;效率高,通常為97%~99%;工作頻率高,從50kHz到2MHz;低漏感(小于0.2%);低電磁干擾(EMI)等。 變壓器是應用電能→機械能→電能的一種新型變壓器,它是利用壓電陶瓷電致伸縮的正向和反向特性而制成的。兩片壓電陶瓷緊密牢固地結(jié)合在一起,將原邊交變電壓加于一片壓電陶瓷的水平軸線,這片壓電陶瓷將產(chǎn)生垂直方向的機械振動而使另一片牢固結(jié)合的壓電陶瓷跟著一起作垂直振動,此時將在其水平軸線方向產(chǎn)生電壓次級輸出電壓。目前這種變壓器功率還不大,適用于電壓較高而電流較小的應用場合,如照明燈具的起輝裝置。超容電容器是電容器件近年來的最新進展,美國的麥克韋爾公司一直保持著超容電容技術(shù)的世界領(lǐng)先地位。超容電容器采用了獨特的金屬/碳電極技術(shù)和先進的非水電解質(zhì),具有極大的電極表面和極小的相對距離,F(xiàn)在已開發(fā)生產(chǎn)出多種具有廣泛適用范圍的超容電容器單元和組件,單元容量小到10F,大到2700F。超容電容器可方便地串聯(lián)組合成高壓組件或并聯(lián)組合成高能量存儲組件。超容電容器組件現(xiàn)已可提供650V的高壓高能量應用。 超容電容器具有廣泛的應用前景。使用超容電容器可以使半導體、造紙、紡織等各種工業(yè)高度自動化的制造系統(tǒng)免受電力波動或短暫中斷所造成的巨大損失;超容電容器能為醫(yī)院或公用事業(yè)單位等在必須使用應急發(fā)電機電源時,提供過渡電源,構(gòu)成短期不間斷電源。對于新型電能車或混合電能車,超容電容器可作為電池的補充甚至替代物。 2.電路集成和系統(tǒng)集成及封裝工藝 電力電子產(chǎn)品或電路的發(fā)展方向是模塊化、集成化。具有各種控制功能的專用芯片,近幾年發(fā)展很迅速,如功率因數(shù)校正(PFC)電路用的控制芯片;軟開關(guān)控制用的ZVS、ZCS芯片;移相全橋用的控制芯片;ZVT、ZCTPWM專用控制芯片;并聯(lián)均流控制芯片;電流反饋控制芯片等。
功率半導體器件則有功率集成電路(PowerIC)和IPM。IPM以IGBT作功率開關(guān),將控制、驅(qū)動、保護、檢測電路一起封裝在一個模塊內(nèi)。由于外部接線、焊點減少,可靠性顯著提高。集成化、模塊化使電源產(chǎn)品體積小、可靠性高,給應用帶來極大方便。
電路集成的進一步發(fā)展方向是系統(tǒng)集成。如現(xiàn)在的逆變器是將200~300個零件裝配在一起成為一個系統(tǒng)。這樣做法要花很多時間和人工,成本也高,也難于做得體積很小。美國VICOR公司生產(chǎn)的第一代電源模塊受生產(chǎn)技術(shù)、功率、磁元件體積和封裝技術(shù)的限制,密度始終未能超過每立方英寸80W。近年來,推出的第二代電源模塊,內(nèi)部結(jié)構(gòu)也改為模塊式,達到高度集成化和全面電腦化。功率密度已經(jīng)達到了每立方英寸120W。電源模塊內(nèi)含元件只有第一代產(chǎn)品的1/3,由115個減為35個。第二代電源模塊的控制電路只含兩個元件,被稱作“大腦”(Brain)!按竽X”是兩片厚膜電路,由VICOR公司自己的無塵室自行開發(fā)生產(chǎn),其總體積只有0.1in3,取代了第一代產(chǎn)品中的約100個控制元件,體積縮小了60%。第二代產(chǎn)品的另一個突破是變壓器的改良,采用屏蔽式結(jié)構(gòu)和鍍銅磁芯,把初級和次級線圈分置左右兩邊而溫升很低。寄生電容和共模噪聲也很低。變壓器處理功率的密度達到了每立方英寸1000W,溫升只有3℃。第二代產(chǎn)品功率器件的管芯直接焊接在基板上以取代第一代TO-200封裝,可以提高散熱效率,降低寄生電感、電容和熱阻。第二代產(chǎn)品的集成度顯然提高了,但還不是系統(tǒng)集成。李澤元教授領(lǐng)導的美國電力電子系統(tǒng)中心(CenterofPowerElectronicsSystems,簡稱CPES)已經(jīng)提出了系統(tǒng)集成的設想,信息傳輸、控制與功率半導體器件全部集成在一起,組成的元件之間不用導線聯(lián)接以增加可靠性,采用三維空間熱耗散的方法來改善散熱,有可能將功率從低功率(幾百瓦~千瓦)做到高功率(幾十千瓦以上)。系統(tǒng)集成的結(jié)果,可以改變現(xiàn)在的半自動化、半人工的組裝工藝而可能達到完全自動化生產(chǎn),因而可以降低成本,有利于普遍地推廣應用。李澤元教授正在應用這一設想,以CPES結(jié)合美國幾所大學的特長,在做電機驅(qū)動的系統(tǒng)集成工作。系統(tǒng)集成的第一步是把逆變器做成一個模塊,驅(qū)動電路、保護電路全部放進去;第二步是把逆變器和電機做在一起,形成一個系統(tǒng)集成。還有一個例,英特的微處理器是非常領(lǐng)先的,這些年的發(fā)展趨勢是速度更快,電壓更低,而需要的電流容量一直在增加。目前英特微處理器工作電壓是2~3V/10A,操作頻率是300MHz。預計兩年后甚至不需要兩年,它的工作電壓會降到1V、電流30~50A,操作頻率為1GHz,F(xiàn)在的做法是把開關(guān)電源緊靠在微處理器,開關(guān)電源以很快的速度提供電流給微處理器,這樣尚能滿足現(xiàn)有微處理器的要求。但將來微處理器工作電壓降低,電流增加,速度加快的時候,現(xiàn)有的解決方法將無法達到它的要求。三年前,李澤元教授就提出要徹底解決問題,必須將開關(guān)電源與微處理器結(jié)合在一起。今天英特公司大部分人接受了這一想法而在積極促成此事。提出的構(gòu)想是:開關(guān)電源緊密結(jié)合在微處理器主機板下面。這樣開關(guān)電源的大小必須與微處理器相當,而現(xiàn)在的開關(guān)電源要比微處理器大幾十倍。如何減小體積?這又面臨新的挑戰(zhàn)! 可以預計,下面幾個問題是開關(guān)電源發(fā)展的永恒方向: (1)開關(guān)電源頻率要高,這樣動態(tài)響應才能快,配合高速微處理器工作是必須的;也是減小體積的重要途徑。
(2)體積要減小,變壓器電感、電容都要減小體積。
(3)效率要高,產(chǎn)生的熱能會減少,散熱會容易,容易達到高功率密度。 電力電子技術(shù)是重要的支撐科技,據(jù)美國總統(tǒng)科學和技術(shù)顧問委員會提出,國家關(guān)鍵性的科技領(lǐng)域有七個方面:能源、環(huán)保、資訊與通信、生命科學、材料和交通。每一領(lǐng)域無一不和電力電子有關(guān),都在起著重要作用,而開關(guān)電源是其中的一個重要方面,有著深遠的美好前景。
【上一個】 維修技巧:開關(guān)電源模塊使用注意事項 | 【下一個】 開關(guān)電源始終無輸出的故障檢修技巧 |
^ 未來的開關(guān)電源將是什么樣子 |